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C. K. Goertz and G. Lu

Department of Physics and Astronomy, University of Iowa, Iowa City

Abstract. Current collection by outgassing probes in motion relative to a magnetized plasma may

be significantly affected by plasma processes that cause electron heating and cross field transport.

Simulations of a neutral gas cloud moving across a static magnetic field are discussed. We treat a

low-fl plasma and use a 2 - 1/2 D electrostatic code linked with our Plasma and Neutral Interaction

Code (PANIC). Our study emphasizes the understanding of the interface between the neutral gas

cloud and the surrounding plasma where electrons are heated and can diffuse across field lines. When

ionization or charge exchange collisions occur a sheath-like structure is formed at the surface of the

neutral gas. In that region the crossfield component of the electric field causes the electron to/_ ×

drift with a velocity of the order of the neutral gas velocity times the square root of the ion to electron

mass ratio. In addition a diamagnetic drift of the electron occurs due to the number density and

temperature inhomogeneity in the front. These drift currents excite the lower- hybrid waves with

the wave k-vectors almost perpendicular to the neutral flow and magnetic field again resulting in

electron heating. The thermal electron current is significantly enhanced due to this heating.

1. Introduction

It is well known that a neutral gas moving across a magnetic field relative to a plasma causes

plasma heating [Machida and Goertz, 1988] and if the relative speed exceeds the Critical Ionization

Velocity (CIV) Vc the neutral gas can be rapidly ionized. [see e.g. Brenning, 1981]. This anomonsly

rapid ionization phenomenon was first discussed by Alfvdn [1954] who postulated that CIV occurs

when the kinetic energy of the neutral particles (rn_,V_/2) exceeds the ionization energy (e¢_on) of

the neutrals. Although CIV is not directly relevant to current collection in space the microscopic

process that leads to electron heating is because it enhances the electron current that can be collected.

Turbulence may aho allow for rapid transport across magnetic field lines.
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The electron heating proceeds in two steps. First the neutrals give energy to ions and then the ions

energize the electrons. The energy transfer from neutrals to ions involves the charging of a neutral

either by charge exchange or ionization; the transfer of energy from ions to electrons involves the

excitation of plasma waves by the moving ions and their subsequent damping by electrons [Raadu,

1978; Galeev, 1981; Abe, 1984; Abe and Machida, 1985; Papdopoulous 1985; Machida and Goertz,

1987]. There is also a more direct way for energizing the electrons. This process occurs in the

leading edge of the neutral gas as it moves through the plasma and works in the following manner.

If a moving neutral is charged by photoionization, impact ionization or charge exchange the newly

created ion will continue to move across the magnetic field with the neutral particle's speed. The

plasma electrons are tied to the magnetic field and remain at rest. Thus a charge separation occurs

at the edge of the neutral cloud and an electric field pointing into the neutral cloud develops. This

electric field causes a secondary electron drift along the front of the neutral gas cloud. Ions are

very massive and will not drift in response to this spatially limited field. The electron drift speed

can be large and destabilize lower hybrid electrostatic waves by the modified two- stream instability

which in turn heat the electrons. Thus intense waves should exist in this front. If the electron energy

becomes large enough impact ionization by the energetic electrons creates new ion-electron pairs thus

providing a positive feedback process. Whereas the waves and electron heating inside the neutral

cloud has been studied extensively before very little theoretical work has been done on the structure

and dynamics of the front. In this paper we report the results of a 2 - 1/2 D electrostatic code

linked with our Plasma and Neutral Interaction Code (PANIC, see Machida and Goertz, 1987) which

focuses on the understanding of this front.

Plasma turbulence inside a neutral gas moving through a magnetized plasma may affect current

collection by outgassing probes in two ways. The increased electron temperature increases the thermal

electron current. In addition, turbulence can cause enhanced diffusive transport of electrons across

magnetic field lines and thus lead to an increased effective collecting area of a probe. This enhanced

diffusion has been discussed by Sudan (1983, a, b) and has been verified by simulations (Machida

and Goertz, 1988).
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2. The Charge Separation

Consider a moving neutralat the interfacebetween a neutralcloudand a plasma that ischarged

(eitherby a UV photon or an energeticelectronor by charge exchange with a stationaryion).

Electronsare trappedby the magnetic fieldpointingout ofthe planeoffigure1. The ionmoves into

the plasma at the speed ofthe neutral.A chargeseparationevolvesand a potentialjump occursat

the plasma - neutral gas interface. Clearly the potential will not greatly exceed a value necessary to

reflect the ion. Thus

eC~ m,VJ I2 (1)

The distance, D, over which a finite electric field exists is difficult to estimate. It is clearly smaller

than an ion-gyroradius and larger than an electron - gyroradius. An exact theory for D is difficult

because the charge separation may be effected by the pre-existing background plasma outside the

neutral cloud. For example plasma ions moving to the left in figure 1 can be accelerated through

the potential and plasma electrons could be trapped within the front. It seems reasonable to assume

that D is of the order of the hybrid gyroradius

D = Rv/-R_R_ (2)

where the newly created particle's gyroradius is

v.
Ry=_m s' ; j=e, i (3)

qyBo

Thus the electric field E = ¢/D will cause all electrons within the front to drift (upwards in figure

1) at a speed

The drii_ energy of these electrons is

E _ V. m/-m-_ (4)
VD= B0 2 vm,

m, vi 1 [miV_ ]
K=y (5)

If a probe would be inserted into this front one would expect an enhanced electron current because

K can be larger than the electron thermal energy. However, it is not clear that the estimate of D

given above is correct.

|
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Because the electrondriftspeed islargeonly insidethischargeseparationfrontone expectsan

electron pressure enhancement there.

drift:

In that caseone must considerthe electrondensitygradient

1

v._ .,Bo V(_,To) (6)

Using the scalelengthD to representthe pressuregradientby n_T,/D we findthat

V_ _m, Vo
v. m_ v.

(7)

where V, istheelectronthermalvelocity.Ifthe electronswillbe therrnalizedwithV, = v/-m_/rn,Vr,we

findthat Vg/VD = O(_). Thus one may presume thatthe diamagneticdriftisunimportant.

However, the plasma waves exciteddepend on the magnitude ofthisdrifteven when itissmall.

Using a localapproximationforelectrostaticwaves propagatingina planethe dispersionrelation

isgivenby

{cop__ _ kV_'(c°P"_2(1, _111 + ,kVi,'(1 + SZ(G)) + + Io(b)e-b(1 -- )f,Z(f,)) ----0

b= (k±vo/_,)_

_1 = o: - kj_VD

(8)

¢_2= klV9

[Gladd,1976].

For l0J2/oJ1[= 0 waves are excitedby the modifiedtwo- stream instabilitywith

_,~ (v_/2)_.

_,o_ ~ _./2 (9)
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The waves propagate not exactly perpendicular to B0 but grow most rapidly for

kll/k ": _/_-_c/mi (10)

Because of this they have an electric field component along the magnetic field which causes electron

Landau damping and hence electron heating.

On the other hand, if[ co2/¢ol [ is not very much smaller than 1 the lower - hybrid drift instability

is generated with:

OJr ,_ O_LH

"_max N WL H

This mode propagating exactly perpendicular to B0 (i.e. kll/k - 0) would not suffer electron Landau

damping and hence not lead to parallel electron heating. It may, however, give rise to an enhanced

effective collision frequency which allows electrons to move across B and along the background electric

field and hence to gain energy (Machida and Goertz, 1988).

Figure 2 shows an exact solution of the dispersion relation (8) for parameters relevant to the

simulation runs described later (rni/rnc = 100). If the gradient drift velocity had been neglected

the growth rate would approach zero for kll/k --_ O. The waves with kll/k >_ 0.1 are due to the

modified two stream instability and for kll/k < 0.1 they are mainly due to the lower hybrid drift

instability. This linear theory does, of course, not predict the non-linearly saturated wave spectrum

and is thus not capable of making predictions about the electron temperature in the neutral gas cloud

and its front. One may, for example, expect that as the modified two-stream instability excited by

VD saturates by electron trapping and heating. The pressure gradient drift Vg grows and the wave

energy shifts to smaller values of kll/k reducing the electron heating efficiency in the front. Clearly,

only a numerical simulation will allow us to investigate this.

3. Simulation

The electrostatic PIC simulation code used for this work has been described in a previous paper

(Machida and Goertz, 1987). It has been used to investigate the CIV process in homogeneous gas

i
t
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clouds(Machidaand Goertz,1987) and in finite size clouds with special emphasis on the ionization

front by Machida et al. (1988). We have also used it to investigate the anomalous heating of electrons

that occurs when an electric field is applied perpendicular to a magnetic field (Machida and Goertz,

1988). In that work the relative drift between plasma and neutrals was below the critical velocity.

It is most closely related to the work reported here. In this work, however, we deal with a finite size

cloud whereas in Machida and Goertz (1988) the neutral gas density was assumed to be homogeneous.

In this paper we include the following collisional processes as in Machida and Goertz (1988):

a. Elastic electron-neutral and ion-neutral collisions (collision frequency v_, vie)

b. Inelastic electron-neutral collisions. In these collisions the electrons lose a certain amount of

energy to the excitation of neutrals. The collision frequency is v_ and the threshold energy is E*. In

each collision the electron loses an energy equal to E*.

c. Charge exchange collisions between ions and neutrals occur at a collision frequency vc_.

d. Electron ionizing collisions Vio,, occur only if the electron energy is above the ionization

threshold energy e_bio.. Since the relative drift between plasma and neutrals is smaller than the

critical velocity vc few ionizing collisions occur.

The values used in the simulation for these parameters are given in Table 1. Since resistive heating

is proportional to Vg and the collisional cooling is proportional to E* these values would indicate

that without wave heating the electrons would rapidly cool inside the neutral cloud. And, indeed,

when we run our code without the Poisson solver (i.e. no self- consistently generated waves present)

the electrons inside the neutral gas cool as expected (data not shown).

The relative drift _TD, between plasma and neutrals is implemented by applying a constant electric

field /_o = /_o x $7D to the simulation. The perturbation field /_' of the waves and in the charge

separation front is calculated self-consistently from Poisson's equation.

We have used two shapes for the neutral gas cloud. In the first set of runs we have used a

neutral gas slab as shown in Figure 3a. This shape is unrealistic but allows for easier comparison
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with theory.In the second setof runs we have used a circulargas cloud as shown in Figure 3b. A

controlrun was alsomade with no collisionsincluded(allu were setequaltozero)which corresponds

to a zero neutralgas density.The diagnosticsincludecalculationsof density,electrostaticfields

and potentials_, electronand iontemperatures,phase spaceplotsand a calculationof the thermal

electronfluxpenetratinga certainsmallareainthe simulationregion.In additionwe can determine

the frequencyand wave- number spectraof the electricfieldfluctuations.A detaileddescriptionof

allour resultsusingthe fullsetof diagnosticswillbe publishedelsewhere.

4. Results

In this paper we are mainly interested in the electron heating that occurs due to collisions and

wave-particle interactions. In Machida and Goertz (1988) we found that after a few 100 w_-_1 the

electron temperature saturated at a value given by

kT. = rim,v3�2

The value of W varied from 0.2 to 0.7 depending on whether lower hybrid wave heating was allowed

to occur in the simulation or not. At the shuttle orbit altitudes m_V_/2 may be as large as 3eV.

Thus this heating could be quite significant. It is the purpose of this work to find out whether the

value of r/is significantly affected by using a finite size cloud.

4.1. Control Run

A control run was made with all collision frequencies set to zero. This run shows the effects of

inherent numerical heating and noise in the code. Figure 4a shows the evolution of T¢ with time.

Little numerical heating occurred. The temperature increased only by 5%. The electrostatic field

frequency spectrum is shown in figures 4b and 4c at different times during the run. The noise level

is reasonably small. A small enhancement near the lower and upper hybrid frequency can be seen.

The electrostatic potential contours are shown in Figure 4d. No large potentials occur. This run

together with the collisional run without the Poisson solver implemented which displayed electron

i
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coolingsuggeststhat any electronheatingobserved in the subsequent runs isclueto wave-partlcle

interactions.

4.2. Neutral Gas Slab Model

Figure 5a shows the evolution of the electron thermal energy (drift energy is subtracted) averaged

over the volume occupied by the neutral clouds. In this run the magnetic field is perpendicular to

the plane (13 -- Bo_). Heating in the cloud is quite obvious. The electron temperature saturates at

kT_---- _irniV2/2 with r/-- 1.1. Figure 5b and 5c show the electrostatic field spectra at different times.

These spectra were obtained in the center of the simulation region (indicated by a cross in Figure

3a). The low frequency peak is at the lower hybrid frequency. The high frequency noise is centered

around the upper hybrid frequency. Figure 5d shows equipotential contours. Comparing this with

Figure 4d reveals that large electric fields in the direction of the plasma motion (from right to left)

are produced as expected and discussed in Section 2. The total potential drop between the leading

and trailing edge of the cloud indicated by the dashed lines is about lOkT_eo or 0.8 rnV_).

In Figure 5 the magnetic field was assumed to be perpendicular to the simulation plane B = Bo_'.

Since lower hybrid waves created by the modified two stream instability have a finite kin they cannot

be excited in this configuration. (See also discussion in Machida and Goertz, 1986.) Thus the electron

heating must be mainly due to enhanced resistive heating (enhanced effective collision frequency) and

heating by waves driven by the gradient drift instability with kli -- 0. In addition in this run the

secondary _ x 13 drift due to the charge separation field is in the plane of the simulation (in the

-_ direction). Elastic scattering of electrons may transform part of that drift energy into thermal

energy.

To allow for the presence of lower hybrid waves driven by the ion beams created by charge exchange

we have made another run in which the magnetic field was in the plane of the simulation (B = Bou_ ).

The applied electric field is given by ]_o -- 13 × _D where VD -- --VD_. In this case lower hybrid

waves driven by the ion beams can be generated. Figure 6 shows the same diagnostics as before.
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Surprisingly the electron temperature increase is slightly smaller (r} _ 1.0) but the fluctuation power

spectrum more intense than in the previous case. In this case the gradient drift instability cannot

be excited because it must propagate in the y - z plane and our two-dimensional simulation has k_

(equal to k± in this case) equal to zero.

4.3. Circul.a.r Gas Cloud Model

One may expect that lower hybrid waves could not be excited if the neutral gas cloud is smaller

than the wavelength of the excited waves. In the previous case the cloud is infinite in the l) direction

(periodic boundary conditions in _). In the circular cloud model the cloud is of finite size. One may

also suspect that heated electrons will escape from the cloud and be replaced by cold electrons from

the surrounding plasma. Thus we expected that the electron temperature increase would not be as

large in this case as in the slab model case.

Figure 7 shows that this is, indeed, the case. Figure 7 shows the results for J3 = BoyS/,. We see

that the charge separation field is only slightly affected by the cloud's finite size. The temperature

increase is not as rapid as before but the temperature has not saturated by the end of the run and

it is not clear that the final saturated T_ will be different from the previous case. When a normal

magnetic field (Bo# >> Boy) is added the escape of electrons from the cloud is reduced and the

temperature increase is faster, almost comparable to the slab model case (data not shown). We have

not analyzed this case in detail and plan to report on more detailed diagnostics in a future paper.

4.4. Electron Thermal Current

As a first step towards understanding how these results affect the current that can be collected

from a probe placed inside a neutral cloud penetrated by a magnetized plasma flow we have calculated

the number of electrons hitting a flat plate placed inside the neutral cloud between t = 0 and t divided

by the time t as a function of time t. We have used two orientations for the plate. In the first case

the plate is placed parallel to the plasma flow. The plate's normal is in the _ direction. In this case

electrons streaming parallel to the magnetic field Boy are intercepted by the plate. The plate is 5
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grid spaces wide. In the second case the plate is placed perpendicular to the flow with its normal

pointing in the _ direction (see Figure 3b). In this case the plate intercepts electrons which have a

velocity component perpendicular to the magnetic field.

The results are shown in Figure 8a for the perpendicular orientation and in Figure 8b for the

parallel orientation. Five curves are shown in each case. The solid line is the control run and shows

a low almost contant electron flux, the dashed lines are for the slab model and the dotted lines are

for the circular cloud model. The double dashed line is for/3 = Bo_. The large dots are also for

= Boz_. The singly dashed line and the small dots are for/_ = Bo_. The increase of the electron

flux due to the neutral gas driven heating processes is quite obvious for the slab model. The fact

that the integrated currents evolve different for the two different orientations of the plate indicates

that the electron heating is anisotropic. The current collected inside a circular cloud is not vastly

different from the control run which we attribute to escape of electrons from the cloud. These results

are, of course, quite preliminary and require more detailed diagnostics. The difference between the

slab and circular model cases may also be affected by the fact that in the circular cloud model the

center of the cloud where the plate was placed was positively charged and thus may have contained

low density electron beams.

5. Discus_on

As expected the leading edge of a neutral cloud becomes positively charged and an electric field

pointing in the direction of the plasma flow occurs. The total potential drop across the neutral

cloud can reach values several times miV_9/2e. This charge separation electric field causes a rapid

/_ x /3 drift of the electrons. This drift appears to be fast enough to destabilize the modified two

stream instability which can cause strong electron heating. We have found previously that this source

for wave generation is more important than the more direct source of ion beams created by charge

exchange or ionization (Machida et al., 1988). We also find that the gradient drift instability is

important.

We have not found that the waves are suppressed in a small neutral cloud even if the cloud
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is smaller than the wavelength of the most unstable waves (roughly the hybrid gyroradius HH =

Rx/-R-_-_). The escape of hot electrons from the neutral cloud does slow the heating rate but is not

such an efficient cooling mechanism that the heating is suppressed. The heating of electrons does

appear to be anisotropic.

Due to the heating of electrons the thermal electron flux is enhanced which should allow for

enhanced current colleciton. This result must, however, be considered as tentative because we have

not yet included the charging of a probe to the floating potential. In that case we expect the particle

orbits to be significantly different and the current collected may differ considerably from the values

indicated by our preliminary results. The position of a probe relative to the edge of the cloud may

also be an important factor which we have not studied. We also intend to investigate in a later work

the effects of a bias voltage on a probe placed inside the neutral cloud.

This work is alsoincomplete in the followingsense. Whereas these simulationscan be used

to illustratethe basicphysicalprinciplesthey cannot make quantitativepredictionsto be used for

applicationstocurrentcollectioninspace.This isdue tocomputationallimitations.For example the

mass ratiomi/mt = 100 istotallyunrealistic.The simulationregionisonly a few hundred Debye

lengthswide which ismuch smallerthan any realoutgassingcloud. The collisionfrequenciesare

artificiallyhigh. Ifwe were toreducet,/wpeto realisticvaluesthe run time would have to be several

ordersofmagnitude larger.These shortcomingsare,of course,not unique to our simulation.They

willplaguesimulationsfora long time to come. This does not,however,mean that simulationsare

useless.Their valuesliesin theirabilitytoisolatephysicalprocesses,assesstheirrelativeimportance

and derivescalinglaws from a comparison with analytictheory.We have not yet accomplishedthis

forthe runs describedhere.
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Parameters

r_i/rne

I;D /t)eo

Vie/O2p6

E'/kToo

//io./OOpe

Control Run

100

0.24

1

0

0

0

1.8

0

0

7.3

Neutral Cloud

100

0.24

1

0.02

0.02

0.02

1.8

0.04

0.04

7.3

Comments

initial ion thermal velocity v_o

electron-neutral elastic collision

ion-neutral elastic collision

electron-neutral inelastic collision

threshold energy for inelastic collis

charge exchange

ionization

ionization energy
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